Archives mensuelles : avril 2015

Application de la thèse des deux universalismes mathématiques aux trois monothéismes

Application de la thèse des deux universalismes mathématiques aux trois monothéismes.

via Application de la thèse des deux universalismes mathématiques aux trois monothéismes.

Publicités

Wronski : introduction à la philosophie des mathématiques

HENOSOPHIA τοποσοφια μαθεσις υνι√ερσαλις οντοποσοφια

http://babel.hathitrust.org/cgi/pt?id=mdp.39015067101579

début de l’ouvrage page 1 :

http://babel.hathitrust.org/cgi/pt?id=mdp.39015067101579;page=root;view=image;size=100;seq=19;num=1;orient=0
« LE monde physique présente, dans la causalite non intelligente,
dans la nature, deux objets distincts : l’un, qui est la forme et la
manière d’être ; l’autre, qui est le contenu, l’essence même de
l’action physique.
La déduction de cette dualité de la nature, appartient à la Philo-
sophie : nous, nous contenterons ici d’en indiquer l’origine trans-
cendantale.–Elle consiste dans la dualité des lois de notre savoir,
et nommément dans la diversité qui se trouve entre les lois trans-
cendantales de la sensibilité (de la réceptivité de notre savoir), et
les lois transcendantales de l’entendement ( de la spontanéité ou de
l’activité de notre savoir). C’est, en effet, dans la diversité qui ré-
sulte de l’application de ces lois aux phénomènes donnés à pos-
teriori , que consiste la dualité de l’aspect sous lequel se présente
la nature; dualité que…

View original post 1 368 mots de plus

La table périodique des n-catégories

HENOSOPHIA τοποσοφια μαθεσις υνι√ερσαλις οντοποσοφια

J’ai déjà cité ce cours de John Baez, un des plus grands experts mondiaux en théorie des catégories et leur application à la physique:

Lectures on n-categories and cohomology

Il n’est pas question ici de faire le tour, même sommairement, de ce qui apparaît comme un véritable festival d’idées nouvelles, il peut être complété par cet autre de Baez:

An introduction to n-categories

qui explique sommairement au début ce qu’est une n-catégorie.

La table périodique des n-catégories est ici sur le NLAB avec les liens utiles:

http://ncatlab.org/nlab/show/periodic+table

Elle figure aussi dans le premier papier cité plus haut « Lectures on n-categories and cohomology » aux pages:
10 et 11
Elle se présente comme un tableau à double entrée indexée horizontalement par n et verticalement par k
Prenons la première ligne du tableau page 10, pour k=0 et n variant de zéro à l’infini: ce sont les n-catégories « normales » , pour n=0 ce…

View original post 386 mots de plus

De l’être (multiple pur) à l’Un : le programme de travail de l’ οντοποσοφια

HENOSOPHIA τοποσοφια μαθεσις υνι√ερσαλις οντοποσοφια

Lorsqu’Alain Badiou dans « L’être et l’évènement » a affirmé (et « démontré ») que l’ontologie, auparavant considérée comme le coeur de la philosophie, portant sur l’être en tant qu’être, était la mathématique, sous les espèces de la théorie axiomatique des ensembles de Zermelo-Fraenkel, il a réalisé une sorte de « révolution » qui a enthousiasmé certains, irrité d’autres…

Nous gardons comme point de départ cette thèse de Badiou, mais seulement comme point de départ : la théorie des ensembles c’est seulement une partie des mathématiques, qui certes a été utilisée comme cadre fondationnel de toute la mathématique.

Aujourd’hui c’est la théorie des catégories, créée en 1945, qui joue ce rôle, et les ensembles ne forment qu’une catégorie particulière: la catégorie ENS des ensembles, qui est aussi un topos.
De plus un ensemble est une catégorie, où il n’y a pas de flèches entre les objets (qui sont les éléments de l’ensemble), on appelle cela une…

View original post 793 mots de plus