Archives du mot-clé topoi de Grothendieck

Plan de travail sur les topoi et les n-topoi

Je me suis déjà expliqué sur le programme à suivre, notamment ici:

https://mathesisuniversalis.wordpress.com/2015/06/24/morphismes-geometriques-et-2-categorie-topos-des-topoi-comme-cadre-general-de-nos-travaux/

Ce projet de « parcours » n’est rien d’autre que l’axe horizontal de la « loi de création » d’Hoené Wronski (1776-1853) entre l’élément-être EE et l’élément-savoir ES, mais totalement réintégré dans la mathematique, à savoir le SEUL domaine théorique où l’on puisse réellement vérifier, ou réfuter, en démontrant rigoureusement nos propres affirmations.
J’ai aussi expliqué, à propos du travail extraordinaire de David Ellerman « Concrete universels in category theory » que nous nous situons ici complètement sur le plan de l’Idee, fidèles à l’obligation de la physique de « dissoudre » ses objets en entités mathématiques. Les êtres, pour nous, ce ne sont plus les arbres, les maisons, les chaises : ce sont les ensembles, et l’ontologie c’est la théorie des ensembles, qui étudie le topos paradigmatique des ensembles, qui est abordable par la théorie des topoi élémentaires, c’est à dire comme catégorie qui a toutes les limites finies, qui est cartésienne fermée, et qui a un classificateur de sous-objets ( qui dans le cas du topos Ens est l’ensemble {0, 1} des valeurs de vérité, c’est ce que Badiou appelle le transcendantal Ω dans un topos quelconque).
Une définition alternative des topoi élémentaires est : ce sont les catégories qui ont toutes les limites finies et aussi les « power objects », qui dans le cas des ensembles sont les ensembles des parties P(X) d’un ensemble X.
Sur tout cela voir la page du Nlab:

http://ncatlab.org/nlab/show/topos
mais nous reviendrons sur toute ces idées non encore abordées (limites, classificateur de sous-objets, etc..)
L’autre façon d’aborder les topoi, c’est la théorie des topoi de Grothendieck, qui revient au même, mais avec des liens avec la topologie notamment.
Un topos de Grothendieck est la généralisation des faisceaux sur un espace topologique X :

Sh(X)

Si l’on prend pour X l’espace réduit à un point {*} on obtient le topos des ensembles:

Ens = Sh(*)

Le « trajet » dans le « monde des idées » que nous visons part donc du topos Ens = Sh(*) comme topos ontologique, Idée de la multiplicité pure sans relations entre les objets, et donc de l’ignorance : il n’est donc pas étonnant que la physique « classique », élaborée il y a quatre siècles, corresponde selon les théories récentes de la « physique des topoi » (« topos physics ») à ce topos des ensembles qui est en quelque sorte son cadre théorique.
Le trajet peut aussi être considéré comme celui de l’unification progressive, c’est à dire de l’intelligibilité et du Savoir croissant: de l’élément-être EE qui est dans notre schéma, ou correspond au topos Ens, en s’élevant progressivement vers ES élément-savoir selon l’échelle des topoi ayant « plus de structure » et celle des 2-topoi, n-topoi : la « higher topos theory ».
Cela est d’autant plus exaltant que ce domaine est en friches, il est en quelque sorte le « 

Far West

 » des mathématiciens-philosophes, exploré seulement par quelques pionniers solitaires comme Jacob Lurie:

https://meditationesdeprimaphilosophia.wordpress.com/2015/06/19/jacob-lurie-continuateur-de-grothendieck/

Mais même l’énorme livre de Jacob Lurie, près de mille pages, « Higher topos theory » n’aborde qu’une partie très restreinte de l’immense domaine : celui des

(∞,1)-topoi

Voir:

http://ncatlab.org/nlab/show/%28infinity%2C1%29-topos+theory

et

https://mathesisuniversalis.wordpress.com/2015/07/26/lhumanite-est-dans-les-tenebres-sur-la-theorie-des-higher-categories/

La première marche que nous devons gravir après les topoi est celle des 2-topoi sur laquelle des travaux existent.

Or si l’exemple paradigmatique d’un topos est la catégorie Ens des ensembles, l’exemple paradigmatique d’un 2-topos est la 2-catégorie CAt des catégories, foncteurs et transformations naturelles.

http://ncatlab.org/nlab/show/Cat

Or deux théories entièrement categoriques, largement dûes à William Lawvere, existent sur la théorie et la catégorie des ensembles et sur la 2-catégorie des catégories:

ETCS (« elementary theory of the category of Sets » voir:

http://ncatlab.org/nlab/show/ETCS

et ETCC (« elementary theory of the category of categories »)

voir:

http://ncatlab.org/nlab/show/ETCC

Publicités

Autre cours d’Olivia Caramello sur la théorie des topoi

Sous le hashtag #GrothendieckTopos nous suivons déjà les vidéos du cours donné à Paris sur les topoi de Grothendieck:

https://sites.google.com/site/logiquecategorique/cours/topos_caramello/cours-du-14-janvier-2013-rappels-sur-les-topos-de-grothendieck

mais il y a aussi les cours donnés à Cambridge, sous forme non de vidéos mais de transparents (« slides ») qui constituent un excellent complément:

http://www.oliviacaramello.com/Teaching/Teaching.htm

Les cours 2, 3 et 4 donnent tout ce qu’il faut savoir sur la théorie générale des catégories pour aborder les topoi, et le cours 1 est un survol général du cours :

http://www.oliviacaramello.com/Teaching/CambridgeToposTheoryCourseLecture1.pdf

On y voit apprend qu’un topos peur être vu comme:

– un espace (topologique) généralisé

– un univers mathématique (un univers de pensée)

– une théorie mathématique « modulo » l’équivalence de Morita

Cette dernière notion est plus technique, nous n’avons pas encore vu l’équivalence de Morita, et ce cours et l’autre nous y mèneront : « modulo » veut dire que l’on identifie les théories qui sont équivalentes sous ce point de vue.

Quant aux deux premiers ils résument ce que Laurent Lafforgue appelle la merveilleuse pensée géométrique de Grothendieck héritée (ou rejoignant sans contact direct) selon lui des intuitions de Simone Weil.

Un topos, considéré comme un univers mathématique, est un univers de pensée par ce que la mathématique n’est pas une simple technique (comme on l’a voyait en Orient avant Thales et Platon, mais une pensée, comme Badiou le dit fort justement.

Mais il faut aller plus loin: la MATHESIS est LA pensée

Elle est cette intelligence-sagesse humaine dont parle Descartes et qui est comme la lumière du Soleil intelligible:

https://renatuscartesiusmathesisuniversalis.wordpress.com/2015/07/31/la-table-demeraude-et-la-premiere-regle-pour-la-direction-de-lesprit-de-descartes/

Mais il existe un quatrième point de vue qui est celui spécifique d’Olivia Caramello : celui des topoi comme ponts unifiants entre divers domaines mathématiques, la théorie des topoi devenant ainsi celle de l’unification des mathématiques.

Cette idée fondamentale est expliquée ici:

https://mathesisuniversalis.wordpress.com/2015/07/30/grothendiecktopos-5-idee-centrale-du-cours-sur-les-topoi-de-grothendieck-comme-ponts-unifiants/